

Significant investment in marine infrastructure at the University of Gothenburg: a new research vessel and mobile underwater systems (AUV and ROV)

Michael Klages Sven Lovén Centre for Marine Sciences University of Gothenburg

The largest research vessel operated by the Sven Lovén Centre is the 39 m long "Skagerak" build in 1968.

New-building R/V SKAGERAK

UNIVERSITY OF GOTHENBURG

New-building R/V SKAGERAK

UNIVERSITY OF GOTHENBURG

MAIN PARTICULARS:

L _{OA}	Length over all	45.50	m
L _{PP}	Length betw. Perpendiculars	40.22	m
B _M	Breadth, moulded	11.00	m
D _M	Depth, moulded	6.00	m
T_{DWL}	Draught	3.80	m
GT	Gross Tonnage	abt. 850	GT
DWT	Deadweight Capacity	abt. 190	Т
ICE	Ice Class Finish /Swedish	F/S ICE	1B
Vs	Service Speed	12.00	kts
	Endurance	14	Days
	Range	2 000	NM

PROPULSION SYSTEM:

Diesel-Electric	690 \	/AC/50	Hz
Gen. Sets.	abt.	4x420	kWe
Propulsion Motor	1x	1 200	kWe
Propeller with Nozzle	1xCPP	Ø2.40	m
Bow Thruster, Ultra Silent, abt 4.5 T		290	kW

COMPLEMENT:

Crew, Single Cabins		5	Pers
Special Personnel, Double Cabins		16	Pers
			2
Open Deck, Working Deck Aft	abt.	140	m²
Hangar	abt.	30	m²
ROV/CTD Control Room			
Main Laboratory	abt.	28	m²
Dry Laboratory	abt.	14	m²
Atmospheric Laboratory	abt.	12	m²
Uncontaminated Seawater Laboratory			

LAUNCHING AND RETRIEVAL SYSTEMS:

A-Frame, reach 7m, ±60°		SWL	8.0 T@7m
Working Deck Crane,	Static	SWL	4.0 T@6m
	Dynamic	SWL	2.0 T@4m
Utility Crane,	Static	SWL	1.5 T@5m
LARS in Hangar,	Dynamic	SWL	3.0 T@3m

General Purpose Winch x2	, 2 000m x 16mm	8.0 T	
Oceanographic Winch x1,	2 000m x 12mm	4.0 T	
Hydrographic Winch x1,	1 000m x 6mm	2.0 T	
CTD/ROV Winch x1,	4 000m x 8.3mm	4.0 T	
CTD/ROV Spooling Drive + Drum			

HYDRO-ACOUSTIC SENSORS:

Multi-Beam Echo Sounder Sub-Bottom Profiler Acoustic Doppler Current Profiler, ADCP Hydro-acoustic Underwater Positioning System

6

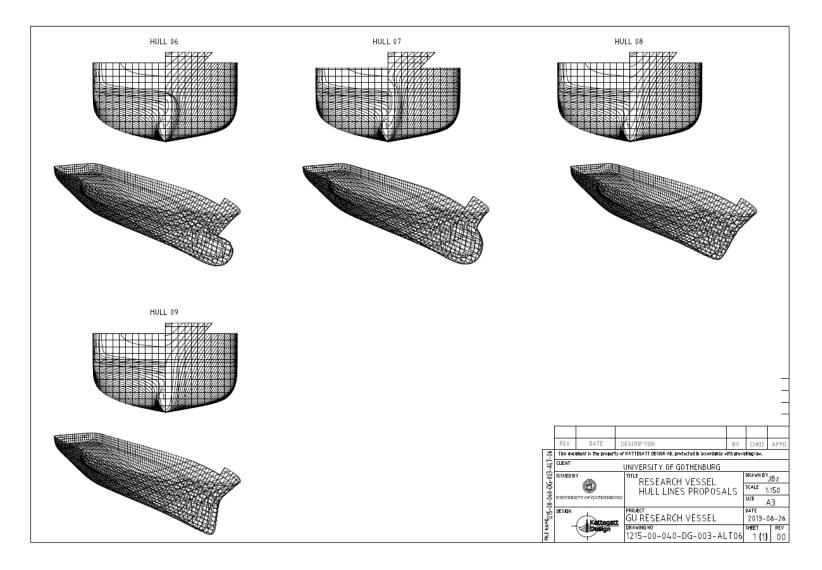
ENVIRONMENT, SUSTAINABILITY AND SOCIAL RESPONSIBILITY: MARPOL Annex I, II, III, IV, V, VI - in particular: Sewage Treatment Unit NO_x – IMO Tier III SO_x – EN 590, Ultra-Low Sulphur Fuel **Energy Efficiency in all Operation Modes Ballast Water Treatment Unit** BWM AFS **EcoSpeed Coating** Hong Kong **Convention for the Safe and Environmentally Sound Recycling of** Ships ILO **Eight Core Conventions, MLC** GU **GU** policy for procurement GU policy for installation/use of materials and compounds onboard

NOISE AND VIBRATIONS:

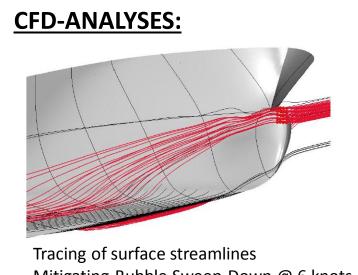
ICES Report 209 – Recommendations to be taken into consideration DNV Silent-R – Compliance to be verified and certified Noise and Vibration Expert engaged throughout Design and Construction Phase

DESIGN CONSIDERATIONS AND CHALLENGES:

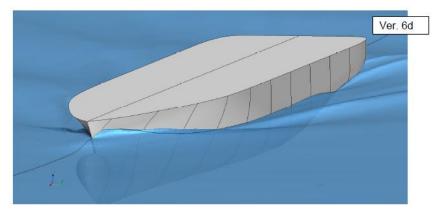
- Geometrical Constraints: Length, Breadth, Draught
- Minimum Impact on the Environment = High Energy Efficiency
- Comfortable and Safe Research Platform in Sea States ≤ Bft 6
- Scientific Mode 0 6 knots = Cavitation Free Operation
- Mitigating risk for Bubble Sweep-down over Sonars

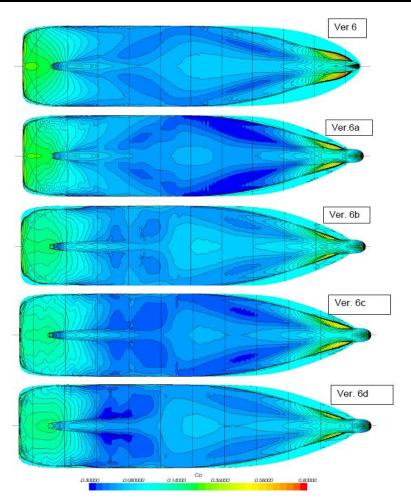

Careful Compromises with regard to Hull Form:

- 4 different Fore Body Shapes evaluated
- Early CFD-Analyses
- Extensive Model Testing Programme



HULL FORM ALTERNATIVES:





Mitigating Bubble Sweep-Down @ 6 knots

Visualization of Wave Generation @ 12 knots

Pressure Distribution Different Hull Forms 12 knots

MODEL TESTS:

- Still Water Resistance and Propulsion Tests
- Propeller + Nozzle Open Water Test
- Streamline Test
- 3D Wake Measurements

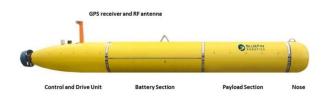
Streamline Test

Still Water Resistance and Propulsion Tests

MODEL TESTS – BUBBLE SWEEP-DOWN MITIGATION:

Flow Visualization in way of two alternative Sensor Positions by means of Underwater Camera Footage

Still Water @ 6 knots


Head Seas, H_{γ_s} = 1.5m / T_z = 4.57 s, @ 6 knots

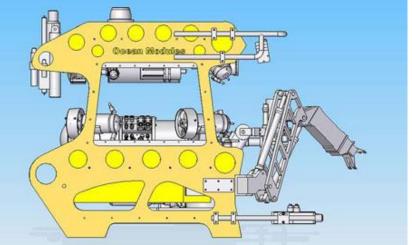
Mobile Underwater System Tools - MUST

UNIVERSITY OF GOTHENBURG

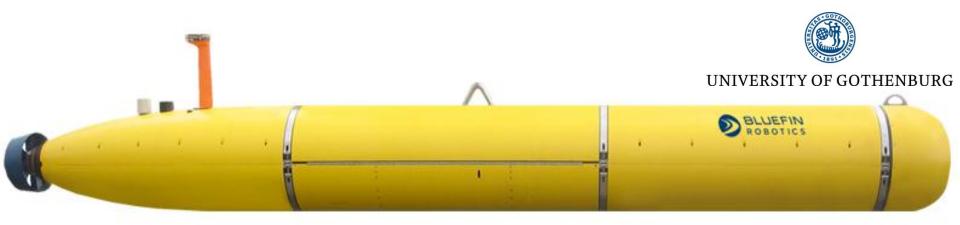
- A National Core Facility for
- Marine Research
- ^{Granted} with 38.1 MSEK in March 2014 MUST – Mobile Underwater System Tools

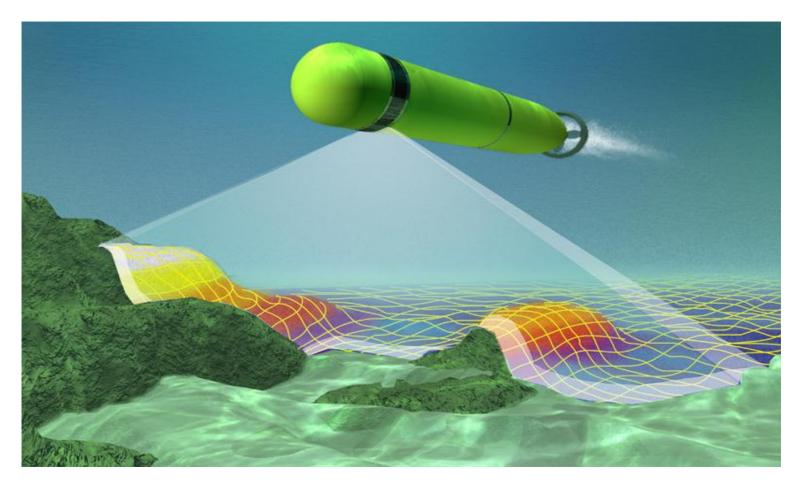
Application to the Knut and Alice Wallenberg Foundation

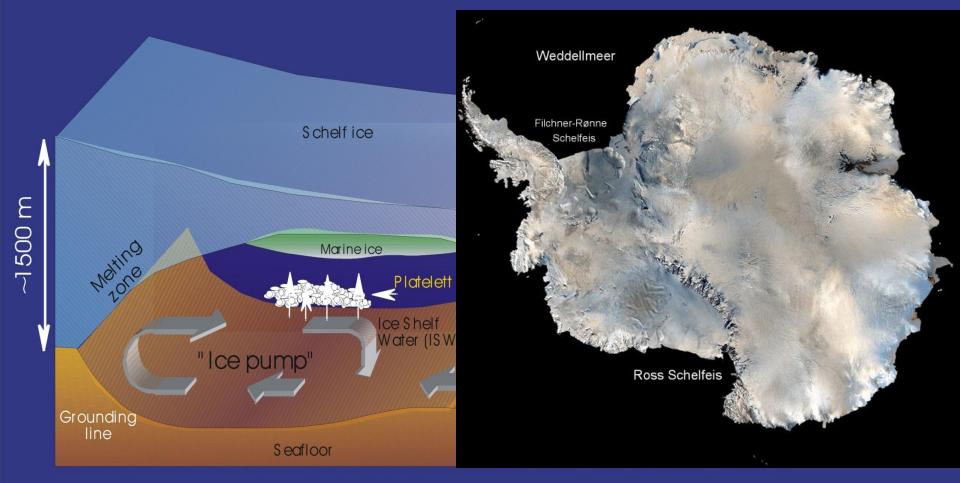
CHALMERS



V8 Offshore (Ocean Modules Sweden AB)


- L x W x H (cm): 156 86 118
- Weight in air: 650 kg
- Thruster: 8 st / 1500 W/st
- Maximum speed: 1.5 knots
- Max. Depth rating: 3000 m


UNIVERSITY OF GOTHENBURG


Instrumentation:

- videocamera HD, 2 videocamera
 720 x 576 pixel, still photograph camera
- LED lamps
- Five function manipulator
- Slurp gun
- Tool sled
- CTD
- ph meter (optode)
- Turbidity sensor
- Forward looking sonar
- Laser pointer
- Acoustic Underwater positioning (transducer - transponder)

Processes in shelf ice caverns:

Water mass modification of Global significance

Melt and freeze processes

Unexplored life

Deep-water re-newal

The next steps

- Out-sourcing the operation of the new vessel is under preparation
- Employment of a Scientific Coordinator at SLC
- Installation of a Web-Portal for on-line application (research vessel, ROV and AUV)
- Investigating the opportunity of GU to apply for membership in OFEG